skip to main content


Search for: All records

Creators/Authors contains: "Morris, Sinead E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. As the SARS-CoV-2 trajectory continues, the longer-term immuno-epidemiology of COVID-19, the dynamics of Long COVID, and the impact of escape variants are important outstanding questions. We examine these remaining uncertainties with a simple modelling framework that accounts for multiple (antigenic) exposures via infection or vaccination. If immunity (to infection or Long COVID) accumulates rapidly with the valency of exposure, we find that infection levels and the burden of Long COVID are markedly reduced in the medium term. More pessimistic assumptions on host adaptive immune responses illustrate that the longer-term burden of COVID-19 may be elevated for years to come. However, we also find that these outcomes could be mitigated by the eventual introduction of a vaccine eliciting robust (i.e. durable, transmission-blocking and/or ‘evolution-proof’) immunity. Overall, our work stresses the wide range of future scenarios that still remain, the importance of collecting real-world epidemiological data to identify likely outcomes, and the crucial need for the development of a highly effective transmission-blocking, durable and broadly protective vaccine.

     
    more » « less
    Free, publicly-accessible full text available August 1, 2024
  2. null (Ed.)
    Vaccines provide powerful tools to mitigate the enormous public health and economic costs that the ongoing SARS-CoV-2 pandemic continues to exert globally, yet vaccine distribution remains unequal among countries. To examine the potential epidemiological and evolutionary impacts of ‘vaccine nationalism’, we extend previous models to include simple scenarios of stockpiling between two regions. In general, when vaccines are widely available and the immunity they confer is robust, sharing doses minimizes total cases across regions. A number of subtleties arise when the populations and transmission rates in each region differ, depending on evolutionary assumptions and vaccine availability. When the waning of natural immunity contributes most to evolutionary potential, sustained transmission in low access regions results in an increased potential for antigenic evolution, which may result in the emergence of novel variants that affect epidemiological characteristics globally. Overall, our results stress the importance of rapid equitable vaccine distribution for global control of the pandemic. 
    more » « less
  3. Sills, Jennifer (Ed.)
  4. null (Ed.)
    In the face of vaccine dose shortages and logistical challenges, various deployment strategies are being proposed to increase population immunity levels to SARS-CoV-2. Two critical issues arise: how will the timing of delivery of the second dose affect both infection dynamics and prospects for the evolution of viral immune escape via a build-up of partially immune individuals. Both hinge on the robustness of the immune response elicited by a single dose, compared to natural and two-dose immunity. Building on an existing immuno-epidemiological model, we find that in the short-term, focusing on one dose generally decreases infections, but longer-term outcomes depend on this relative immune robustness. We then explore three scenarios of selection and find that a one-dose policy may increase the potential for antigenic evolution under certain conditions of partial population immunity. We highlight the critical need to test viral loads and quantify immune responses after one vaccine dose, and to ramp up vaccination efforts throughout the world. 
    more » « less
  5. null (Ed.)
    The future trajectory of the coronavirus disease 2019 (COVID-19) pandemic hinges on the dynamics of adaptive immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2); however, salient features of the immune response elicited by natural infection or vaccination are still uncertain. We use simple epidemiological models to explore estimates for the magnitude and timing of future COVID-19 cases, given different assumptions regarding the protective efficacy and duration of the adaptive immune response to SARS-CoV-2, as well as its interaction with vaccines and nonpharmaceutical interventions. We find that variations in the immune response to primary SARS-CoV-2 infections and a potential vaccine can lead to markedly different immune landscapes and burdens of critically severe cases, ranging from sustained epidemics to near elimination. Our findings illustrate likely complexities in future COVID-19 dynamics and highlight the importance of immunological characterization beyond the measurement of active infections for adequately projecting the immune landscape generated by SARS-CoV-2 infections. 
    more » « less